Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency
نویسندگان
چکیده
To elucidate the phytohormonal basis of the feedback regulation of leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.), two cultivars contrasting in sensitivity to K deficiency were self- and reciprocally grafted hypocotyl-to-hypocotyl, using standard grafting (one scion grafted onto one rootstock), Y grafting (two scions grafted onto one rootstock), and inverted Y grafting (one scion grafted onto two rootstocks) at the seedling stage. K deficiency (0.03mM for standard and Y grafting, and 0.01mM for inverted Y grafting) increased the root abscisic acid (ABA) concentration by 1.6- to 3.1-fold and xylem ABA delivery rates by 1.8- to 4.6-fold. The K deficiency also decreased the delivery rates of xylem cytokinins [CKs; including the zeatin riboside (ZR) and isopentenyl adenosine (iPA) type] by 29-65% and leaf CK concentration by 16-57%. The leaf ABA concentration and xylem ABA deliveries were consistently greater in CCRI41 (more sensitive to K deficiency) than in SCRC22 (less sensitive to K deficiency) scions under K deficiency, and ZR- and iPA-type levels were consistently lower in the former than in the latter, irrespective of rootstock cultivar or grafting type, indicating that cotton shoot influences the levels of ABA and CKs in leaves and xylem sap. Because the scions had little influence on phytohormone levels in the roots (rootstocks) of all three types of grafts and rootstock xylem sap (collected below the graft union) of Y and inverted Y grafts, it appears that the site for basipetal feedback signal(s) involved in the regulation of xylem phytohormones is the hypocotyl of cotton seedlings. Also, the target of this feedback signal(s) is more likely to be the changes in xylem phytohormones within tissues of the hypocotyl rather than the export of phytohormones from the roots.
منابع مشابه
Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis.
Plants initiate leaf senescence to relocate nutrients and energy from aging leaves to developing tissues or storage organs for growth, reproduction, and defense. Leaf senescence, the final stage of leaf development, is regulated by various environmental stresses, developmental cues, and endogenous hormone signals. Jasmonate (JA), a lipid-derived phytohormone essential for plant defense and plan...
متن کاملStrigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.
Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant develo...
متن کاملSoil Potassium Deficiency Reduces Cotton Fiber Strength by Accelerating and Shortening Fiber Development
Low potassium (K)-induced premature senescence in cotton has been observed worldwide, but how it affects cotton fiber properties remain unclear. We hypothesized that K deficiency affects cotton fiber properties by causing disordered fiber development, which may in turn be caused by the induction of a carbohydrate acquisition difficulty. To investigate this issue, we employed a low-K-sensitive c...
متن کاملA novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum
Premature leaf senescence has a negative influence on the yield and quality of cotton, and several genes have been found to regulate leaf senescence. Howeer, many underlying transcription factors are yet to be identified. In this study, a NAP-like transcription factor (GhNAP) was isolated from Gossypium hirsutum. GhNAP has the typical NAC structure and a conserved novel subdomain in its diverge...
متن کاملEffects of Different Potassium Stress on Leaf Photosynthesis and Chlorophyll Fluorescence in Maize (Zea Mays L.) at Seedling Stage
Leaf early senescence caused by nutrition deficiency is one of the major limitation reasons in the world crop production. Potassium (K) is one of important nutrient elements in crop growth, which modifies dozens of enzyme activations and controls stomatal movement of photosynthesis. The yield and quality of maize (Zea Mays L.) have been limited due to K deficiency in plough layer soil. However,...
متن کامل